

Starting Guide for Developers

InEight Integrations

©2025 InEight Inc. All rights reserved.

Changelog

This changelog contains only significant or other notable changes to the document revision. Editorial or

minor changes that do not affect the context of the document are not included in the changelog.

Rev Date Description

1.0 05-MAR-2019 Initial Release

 Updated template.
Added information for creating bearer tokens.

2.0 01-AUG-2019 Published revision.

 Added information about asynchronous GET pattern

 Added note about SourceSystemId updates requiring a support request

3.0 30-OCT-2019 Published revision.

 29-JAN-2020 Updated information about using GET requests to include specific cases for no data
found, less than 1kb data, and more than 1kb data.

 25-FEB-2020 Added information about Core GET APIs enhancement to include additional record
count data in the response.

 11-MAY-2020 Added Examples on max record counts and skipping.

 22-MAY-2020 Added NOTE to AppLog Field Definitions about all integration error messages
returned.

4.0 12-AUG-2020 Formatting changes.

5.0 01-SEP-2021 Content review. Made formatting and grammatical changes.

6.0 27-JUN-2022 Added table of API responses in GET Request and Responses.

7.0 20-JUN-2023 Added information to clarify POST and PATCH function in Updating an Existing
Record.

8.0 30-MAY-2025 Added multiple sections, such as Sample HTTP response, API response codes, and
Location URL response codes. Deleted sections that were unnecessary or not
applicable.

8.1 05-JUN-2025 Updated Additional Troubleshooting. Updated template.

Starting Guide for Developers - InEight Integrations

Contents 3

Contents

About This Document ...5

General Information About InEight Integrations...5

Business Rules for Integrations ..5

Types of Integrations ...5

Integration Frequencies..6

Data Transformation ..6

JSON to Other File Formats ...6

Data Mapping ...6

Business Logic ...6

Record Identification..7

Master Data Example of Record Identification ...8

Associated Entity Example of Record Identification ...9

Source System... 10

URLs for APIM Calls .. 10

Migrating to APIM ... 10

API Request Headers.. 11

API Authentication and Authorization... 11

How to Generate a Bearer Token ... 12

Using GET with InEight APIs... 12

GET Request and Responses .. 12

Sample HTTP response ... 13

API response codes .. 14

Location URL response codes .. 14

Additional Troubleshooting ... 15

Data Availability .. 16

Maximum Record Counts .. 16

Record Counts in Core GET APIs ... 16

Example Asynchronous GET Process ... 19

Example Asynchronous POST Process ... 21

Update, Insert, and Delete Operations for Inbound Data .. 22

Starting Guide for Developers - InEight Integrations

4 About This Document

Creating a New Record ... 22

Updating an Existing Record.. 22

Deleting a Record .. 22

A Note About Updating Data and Data Mismatches .. 23

Changing Associated Records .. 23

Case: An Employee moves from one Project to another... 23

Case: Employee assigned to a new Project in addition to existing Project(s)................................ 23

Case: All Employees assigned to a new Project ... 23

Starting Guide for Developers - InEight Integrations

About This Document 5

About This Document

This document is the starting point for developers creating integrations with InEight. This document

contains information about InEight APIs, where to find them, how to use them, what security and

authentication measures are taken, and other general information that is common to all cloud

application APIs.

This document does not cover specific details of each API, such as data elements, structure,

prerequisites, data flows, or specific error codes. For those details you will need to reference the InEight

Integration Catalog and identify the individual specification documents that cover the specific APIs.

General Information About InEight Integrations

Business Rules for Integrations

While integrations for InEight are designed to be agnostic of who or what system will be using them

from outside of InEight, many of them are dependent on specific business requirements for the flow of

data. For example, data exposure about time worked for employees and equipment only occurs when

specific activities are performed in the UI that indicate the data for those records has reached a specific

state. It is important to note here because each integration might require attention to when and how it

can be used. Any pertinent information regarding how, when, and what rules apply to the use of an

integration are covered in the integration’s specification document.

Types of Integrations

InEight integrations are comprised of either of the following:

• Asynchronous REST APIs
o Primarily used to push data to InEight
o Some Get APIs are exposed
o All data is provided in JSON data packages
o All are managed through our API Management Portal

• Web Services
o Primarily used to push data to external systems or initiate a request from external systems

based on specific user actions in InEight applications
o All data is expected or provided in JSON data packages
o Are configured in the InEight UI

Starting Guide for Developers - InEight Integrations

6 General Information About InEight Integrations

Integration Frequencies

InEight supports integrations at any interval required by a customer or third-party application. However,

the actual frequency of an integration should be determined by business need and amount of data being

transmitted at any one time. For example, updates to Employee records could be sent to InEight in near

real-time based on events such as hiring or termination that occur in an ERP or HCM system because

these are infrequent and will update a very small set of records at a time. Updates to cost items for

actuals, forecast, or budget have a much larger payload (potentially tens of thousands of records) and

can result in better performance if it occurs either on demand by a user in InEight or at scheduled off-

hour intervals.

When creating, or using integrations for InEight, discussion of the individual integrations, payloads, and

frequencies must occur to determine the best impact to all systems.

Data Transformation

InEight generally does not perform transformation or mapping of any data due to the number of unique

cases and needs across different customers. Data provided to external systems from InEight will be

representative of the raw data in the InEight’s business operations. It is generally the responsibility of

the customer receiving systems, or a middle tier of an integration to handle mapping and

transformation logic.

JSON to Other File Formats

InEight integrations provide all data through externally (to InEight) accessible APIs that produce records

in a JSON format. Transformation of records from JSON to other formats (e.g., XML, CSV, etc.) must be

handled by the customer via a business logic application such as SAP Process Integrator, Azure Logic

Apps, Microsoft BizTalk, Dell Boomi, or other proprietary logic/code.

Data Mapping

Transformation of data in a field from one context to another (e.g., a set of statuses that must be

converted to a true/false flag) and mapping of customer data to an integration field between a customer

system and the output from InEight APIs or expected input to InEight integrations must be handled by

the customer’s integration system or middleware.

Business Logic

Business logic required to conform data, fill fields, or evaluate specific data conditions must be handled

by the customer. Some examples of business logic are as follows:

• Providing default data when a field from InEight is left blank.
• Evaluation of one or more data fields to determine an expected end result. For example, if an

employee has an active status AND does not have hours, set an "at work" field to false.

Starting Guide for Developers - InEight Integrations

General Information About InEight Integrations 7

Record Identification

InEight takes into consideration the "system of record" for all stored data. When the data originates

from sources that are external to the InEight cloud platform, a unique identifier is required to be

provided by the external system for each record to ensure a common value can be used when

exchanging, creating, or updating records through integrations. InEight integrations commonly refer to

this field as "SourceSystemId".

When managing "Master Data" (data that is normally static and used to classify or provide dimensional

data to transactions), it is standard practice for each InEight entity to contain the following types of

fields:

• SourceSystemId: The unique identifier that will be used to match records exchanged in integrations.
This field is not normally displayed in the InEight UI.

• Natural Key: This is also a unique identifier, but one that is recognizable by users and is always
displayed in InEight UIs. In InEight integrations, this field might be labeled as "DisplayId", or "Name",
or have a unique label to accommodate specific usability concerns (e.g., Email is used as the natural
key for Users).

InEight separates the concept of record identification into these two fields to allow the possibility of

using both a system generated identifier such as a GUID as the SourceSystemId to make system-to-

system interactions easier, while also using a human recognizable unique value for all business

processes handled through user interaction. In cases where an external system uses a natural key as the

system-identifiable unique value, it is acceptable to set the SourceSystemId and Natural Key to the same

value.

NOTES:
SourceSystemId and Natural Key field types should be considered required whenever they
are present in an integration, even if the fields are not marked as technically required for
the integration to work.

SourceSystemId is considered a permanent identification method. To avoid the possibility of user error

occurrences by staff who might not understand the significance of the field, it is not displayed in the

application UI. Once a SourceSystemId is set for a record, it can only be changed through a support

request to InEight or using Users_UpdateSourceSystemID API.

The Users_UpdateSourceSystemID API allows users to edit and change SSIDs in one or multiple records

using External System programmatically or through APIM manually. This API impacts Users_Import and

Users_Get only. There is no restriction on the number of SSIDs that can be updated through this API. We

have not put any validation in place to ensure that any user cannot update their own SSID through this

API. Quite simply, the reason for this is that the SSID update happens at the service account level and is

agnostic of individual persons... This is further explained below:

The External System integrations use a SVC Account (ClientId/Secret) for all transactions (import/GET).

So, irrespective of the user (person) or automated system triggering the import, they are processed in

the context of a svc account. Hence, the CreatedById and ModifiedById audit columns in the database

tables will have "1" (System Admin) if the entities are imported from External Systems.

Starting Guide for Developers - InEight Integrations

8 General Information About InEight Integrations

Master Data Example of Record Identification

The following example shows the JSON format for the Master Data entity "Cost Centers". In this

example, there is a specific field called "SourceSystemId" and a field called "CostCenterDisplayId" that

represents the Natural Key that will be used in UIs.

[

 {

 "CostCenterDisplayId": "string",

 "CostCenterDescription": "string",

 "CostCenterTypeDisplayId": "string",

 "IsActive": true,

 "SourceSystemId": "string",

 "SourceSystemName": "string"

 }

]

When the records were created the API request could have contained several records at once and

appeared as follows.

[

 {

 "CostCenterDisplayId": "ER",

 "CostCenterDescription": "Equipment Rental",

 "CostCenterTypeDisplayId": "OVR",

 "IsActive": true,

 "SourceSystemId": "OVRER",

 "SourceSystemName": "SAP"

 },

 {

 "CostCenterDisplayId": "HO",

 "CostCenterDescription": "Home Office Overhead",

 "CostCenterTypeDisplayId": "OVR",

 "IsActive": true,

 "SourceSystemId": "OVRHO",

 "SourceSystemName": "SAP"

 },

 {

 "CostCenterDisplayId": "PL",

 "CostCenterDescription": "Project Labor",

 "CostCenterTypeDisplayId": "PRO",

 "IsActive": true,

 "SourceSystemId": "PROPL",

 "SourceSystemName": "SAP"

 },

 {

 "CostCenterDisplayId": "EM",

 "CostCenterDescription": "Equipment Maintenance",

 "CostCenterTypeDisplayId": "PRO",

 "IsActive": true,

 "SourceSystemId": "PROEM",

 "SourceSystemName": "SAP"

 },

 {

 "CostCenterDisplayId": "PO",

 "CostCenterDescription": "Project Operations",

Starting Guide for Developers - InEight Integrations

General Information About InEight Integrations 9

 "CostCenterTypeDisplayId": "PRO",

 "IsActive": true,

 "SourceSystemId": "PROPO",

 "SourceSystemName": "SAP"

 }

]

When the integration is processed, records appear in the UI as follows. Notice that SourceSystemId is

not shown, and the CostCenterDisplayId field is renamed to ID in the UI.

If a record needs to be updated, the original SourceSystemId of the record will need to be provided as

reference. The below JSON shows the "Project Operations" Cost Center being deleted as an option from

Cost Centers.

[

 {

 "CostCenterDisplayId": "PO",

 "CostCenterDescription": "Project Operations",

 "CostCenterTypeDisplayId": "PRO",

 "IsActive": false,

 "SourceSystemId": "PROPO",

 "SourceSystemName": "SAP"

 }

]

Associated Entity Example of Record Identification

Several InEight integrations represent the union of two or more entities to create an association of

master data. The following example uses the Project Craft integration which allows customers to

determine which Craft records will be allowed for use on a specific Project.

In the ProjectCraft JSON, "ProjectId" is the "SourceSystemId" of the Project entity, and "CraftId" is the

SourceSystemId of the Craft entity.

Starting Guide for Developers - InEight Integrations

10 General Information About InEight Integrations

[

 {

 "ProjectId": "string",

 "CraftId": "string",

 "StraightTimeRate": 0.0,

 "OverTimeFactor": 0.0,

 "OverTimeRate": 0.0,

 "DoubleTimeFactor": 0.0,

 "DoubleTimeRate": 0.0,

 "IsActive": true,

 "UseBaseWageFactors": true

 }

]

Source System

Each integration contains fields labeled SourceSystemId and SourceSystemName, which is meant to help

InEight understand the general source of the data being received. No actions are taken with this

information, but it can be useful at a later point to help determine specific system behaviors attached to

the incoming data. Work with the InEight Implementations or Professional Services team to establish a

unique value that should be contained in these fields for your specific implementations of InEight

integrations.

URLs for APIM Calls

When sending integration request messages for InEight APIs, the following URL convention is used.

Specific URL addresses for each API can be found in the API’s details in APIM.

https://api.ineight.com/integrations/{version}/{api name}/{method | GET parameters}

Migrating to APIM

For the InEight customers on older versions that are currently making direct calls to APIs within their

environments, they will need to migrate to APIM. To migrate to APIM, do the following:

1. Sign up for a subscription in APIM

2. Subscribe to the External Integrations product to obtain a subscription key, see API Request

Headers for instructions.

3. Point integration calls to APIM endpoints, such as htttps://api.ineight.com/core/employees.
4. Modify message headers to include new required fields per API Request Headers.

• The authorization header should be the same AAD bearer token that is currently being used.

Starting Guide for Developers - InEight Integrations

General Information About InEight Integrations 11

API Request Headers

All InEight APIs require specific information to be contained within the header of the request message.

The following table provides information about the headers.

Header Required Type Description

X-IN8-TENANT-PREFIX Yes String

This determines how to route the incoming message to
the appropriate Account for authentication and
processing. Use the prefix of your InEight environment
URL. For example, if your environment URL is
https://sample-domain.hds.ineight.com, then the Prefix
is "sample-domain".

Content-Type No String

Media type of the body sent to the API. Only required on
requests that contain content. Use standard MIME types.

If POST, "application/json"

Ocp-Apim-Subscription-Key Yes String
Subscription key which provides access to this API. The
value for this field can be found in your APIM Profile.

Authorization Yes String

The Bearer Token created for your authorized user or
application.

See the section titled "How to Generate a Bearer Token"
for more detail.

NOTE: While never recommended by InEight for InEight applications, unmanaged (non-APIM) API
requests only require the Authorization header.

API Authentication and Authorization

API requests made to InEight require two authorizations.

Ocp-Apim-Subscription-Key: The first is your authorization to use APIM, which is handled by creating an

account in InEight’s APIM portal, subscribing the account to Products in APIM, and then passing the

generated Subscription Key in the "Ocp-Apim-Subscription-Key" header of the API request. This is

described in more detail in the "Generating an APIM Subscription Key" section of this document.

Authorization: The second authorization is done in two parts. Part one is authentication of an Active

Directory account associated to a User in InEight. Part 2 is authorization of that User to perform actions

in InEight. Both parts of this authorization are handled by passing a Bearer Token in the "Authorization"

header of an API request. The Bearer Token is used to authenticate an Active Directory account, look up

the User associated to that account, and determine if the User has the appropriate permission in

InEight.

NOTE: The User associated to the AD account must have the permission "Manage external API’s"
assigned to them in InEight.

Starting Guide for Developers - InEight Integrations

12 General Information About InEight Integrations

How to Generate a Bearer Token

The Bearer token is acquired by sending an HTTP request as follows:

POST /<TenantId>/oauth2/token HTTP/1.1

Host: login.microsoftonline.com

Content-Type: application/x-www-form-urlencoded

cache-control: no-cache

grant_type=client_credentials&client_id=<ClientId>&client_secret=<ClientSecre

t>&resource=<TargetResource>

If the request is successful, the response looks something like this:

{

 "token_type": "Bearer",

 "expires_in": "3600",

 "ext_expires_in": "0",

 "expires_on": "1539884258",

 "not_before": "1539880358",

 "resource": "<TargetResource>",

 "access_token": "<AccessToken>"

}

For subsequent API requests to InEight, pass the returned <AccessToken> value in the Authorization

header. The AccessToken is typically good for one hour. You can determine the exact time the token will

expire by taking the value for "expires_on" and adding that number of seconds to Jan 1, 1970 12:00 AM

GMT. When that time nears or passes, you should make the request to acquire a new token before

making additional API calls to InEight.

Using GET with InEight APIs

Several InEight integrations allow customers to retrieve data using a Get method on the API request.

Most of those integrations use an asynchronous pattern for processing the data as outlined below. Any

integrations that support a Get method that do not follow the asynchronous pattern will have their

processing method described in detail within their integration specification.

GET Request and Responses

When a Get request is received by the InEight API it first validates the request matches the expected

JSON payload criteria. If it passes, a response of 202 Accepted is returned to the caller along with an

element labeled as Location that provides the URL address where the requested data can be retrieved.

Additionally, a Retry-After header indicating the number of seconds client should wait before making

another request is returned.

If the requested data is less than 1kb, the location URL will contain the data in JSON format.

Example for Countries_Get using $filter=startswith(Name, ‘Be’)

Starting Guide for Developers - InEight Integrations

General Information About InEight Integrations 13

• If the requested data exceeds 1kb, a file containing the requested data in a JSON format will be
placed in the URL.

• If no data was able to be found based on filter criteria ($filter) added to the request, the location will
contain a message stating: "No Result Values".

The actual processing of the request and any additional OData or parameterized query information is

then handed off to the business logic of the InEight application that owns the data entities involved. It

can take anywhere from milliseconds to a couple of minutes for the application to fulfill the request and

place the data file in the expected "Location".

During this processing time, customer systems poll the "Location" URL every {Retry-After} seconds to

see if the file is available.

• If it is not available, the poll request will return a response of "202".

• Once available, the response will change to "200" and the file will be included.

InEight API endpoints return a 202 Accepted response rather than a simple 200 OK response. The 202

Accepted response includes a Location header with a URL that customers can call periodically, with an

interval of seconds specified in Retry-After header, which will return either another 202 Accepted

response indicating that the import is still in progress, a 200 OK response with an optional result payload

indicating the import completed successfully/partially, or a 4XX/5XX response indicating that the import

failed or timed out.

Sample HTTP response

HTTP/1.1 202 Accepted
Cache-Control: no-store, must-revalidate, no-cache
Pragma: no-cache
Content-Length: 0
Location: https://{tenant-
prefix}.hds.ineight.com/ExternalSystem//Messages/ImportStatus?requestId=6ede5356-cbd8-4602-
81b1-e4150bc1c2f1&messageId=1a47aa63-59c8-40fe-b2db-43e43b37744f
Retry-After: 10
Access-Control-Expose-Headers: Request-Context
Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
X-RequestID: 8ade2530-bf48-446d-8648-a9be45fdf961
Request-Context: appId=cid-v1:ed9ea0ab-37bd-4c25-acd6-d6cb56bbc8d8
X-Powered-By: ASP.NET

Date: Thu, 29 May 2025 20:09:50 GMT

Starting Guide for Developers - InEight Integrations

14 General Information About InEight Integrations

API response codes

The API could return the following responses.

Code Description Details

200 Response Response code when a request returns synchronously with a response.
*This response code is rarely seen because most InEight APIs are
asynchronous. Synchronous APIs will be called out individually in the API
specific documentation*

202 Request accepted, queued,
or processing

Response code when a request that has been accepted for processing.

400 Bad request Response code when payload is not complete. An example would be a
payload is missing required fields.

401 Unauthorized Response code when authorization type not specified. An example would
be an authorization flow not specified in the request.

403 Forbidden error Response code when your authorization method doesn't have permission
to access the external API. The permission required for external APIs is
under Suite administration -> Application integrations -> "Manage
external API's".

404 Invalid end point Response code when the URL provided is invalid. If the Location header
URL is accessed after it’s expired, the status will be a 404.

405 Method not allowed Response code when using an HTTP method (like POST, GET, PUT,
DELETE) that the resource doesn't support. An example would be using
PATCH on a POST operation.

417 Except header not allowed Response code when the API doesn't support the Except request in the
header.

500 Server Error Response code when there's an internal server error. An example would
be if an invalid tenant prefix provided.

502 Bad gateway Response code when there's an incorrect response from within the
communication on InEight's systems.

503 Service unavailable Response code when the server is temporarily unable to handle the
request. An example would be if a deployment is occurring, and the
Azure services are down.

Location URL response codes

The Location/Status header endpoint (https://{tenant-

prefix}.hds.ineight.com/externalsystem/messages/status?messageId={messageId})

Response URL Security

An environment configuration is available to increase the security around the authentication of API

response URL messages. If the environment setting is configured on, the time-out of a response URL will

be set to 15 minutes. The consumer will have to provide a token with the response URL to access the

response message.

Starting Guide for Developers - InEight Integrations

General Information About InEight Integrations 15

If the Response URL security is configured, you will have to provide the below header value to access the

Response URL.

Header Required Type Description

Authorization Yes String The Bearer Token created for your authorized user or
application.

See the section titled "How to Generate a Bearer Token" for
more detail.

Response codes

Code Description Details

200 Response • For GET requests:
o If the payload is less than 1KB, it is returned as the content/body

of the response.
o If the payload is greater than 1KB, then the payload is

downloaded as a json file.
• For Import requests:

o If all the records were successfully imported, the response
content/body will be:
{"Logs":]}

If it is a partially succeeded request, the response will have the validation
errors as:
{

 "Logs": [

 "Ignoring Trade having display '{TradeId}' as it is having duplicate
SourceSystemId or DisplayId",
"Imported 0 of 1 Trade entities: Adds(0) Updates(0) Deletes(0) Errors(0)
Skipped(1)"

]

}

202 Request Processing Request is still processing.

302 Redirect blob response URL If additional response security is not enabled, you could receive a redirect
blob response URL.

404 Not found Response URL is no longer available, or an invalid URL has been entered

500 Server Error Response code when the process failed with an exception.

Additional Troubleshooting

Errors are logged within your environment. Go to the following URL to access the additional error log

information.

https://{tenant}.hds.ineight.com/applogs

Starting Guide for Developers - InEight Integrations

16 General Information About InEight Integrations

Data Availability

InEight APIs that follow this pattern make all the data for the requested entity available at any time. For

instance, a request can be made at any time to retrieve every Employee or Equipment resource

available in the customer’s InEight environment. However, to prevent an unnecessarily large request

from processing each time, some APIs require or optionally ask for specific query parameters to filter

the data to a smaller subset.

NOTE:

InEight APIs that support a GET method, but do not follow this pattern, will have their
specific processing method described in their integration specification. For instance, the
Daily Plans API works by adding Daily Plan records to an integration queue each time one
is approved, and the GET request will return only records that exist in the queue at the
time of the request.

Maximum Record Counts

To prevent accidental overloading of system resources, GET requests that follow this pattern will return

a maximum number of records each time the request is made. To return all available records for an

entity, it is up to the customer’s systems to make as many requests as necessary (using the OData $skip

parameter) until all records are received.

NOTE: Each integration that supports a GET method will have its maximum record count stated
either in the integration specification, or in the description of the API in APIM.

Record Counts in Core GET APIs

All APIs provided by the Core application that support a GET method include additional information

about record counts when the OData $count parameter is included and set to "true" in the request. This

additional information should help developers using the Core APIs to determine how many records they

should expect to receive based on their request parameters and determine how many times they might

need to make subsequent requests using $skip before all records are received.

The additional record count information includes:

• @odata.count – The count of all records in the entity
• QueryCount – The total number of records that should be returned from the entity based on

any OData filters or other criteria added to the request.
• StartingRecord – Based on the QueryCount and any "$skip" request, determines which record

number is represented as the first record within the response data.

• EndingRecord – Based on the QueryCount and any "$skip" request, determines which record
number is represented as the last record within the response data.

Starting Guide for Developers - InEight Integrations

General Information About InEight Integrations 17

Examples

Example 1 - No specific $filter criteria

• Customer requests data using the "Regions_GET" API.
• Core contains 3,531 records for regions (returned as "@odata.count")

• Core provides the first 1,000 records to the requester as the returned data set
• The JSON payload contains the following information:

o "@odata.count": 3531
o "QueryCount": 3531
o "StartingRecord": 1
o "EndingRecord": 1000

The customer now knows that there are 3,531 total records to retrieve, and they have 1,000 of them so

far...

• Customer makes another request using "Regions_GET", but specifies a $skip value of 1000

• Core provides the next 1,000 records as the returned data set
• The JSON payload contains the following information:

o "@odata.count": 3531
o "QueryCount": 3531
o "StartingRecord": 1001
o "EndingRecord": 2000

The customer continues to make requests using $skip until the EndingRecord reaches 3531

Example 2 - Customer uses $filter criteria

• Customer requests data using the "Regions_GET" API with $filter=startswith(CountryISOCode,
"C")

• Core contains 3,531 records for regions (returned as "@odata.count")

• After applying the filter there are still 1,212 records that meet the request of the customer
• Core provides the first 1,000 records to the requester as the returned data set

• The JSON payload contains the following information:
o "@odata.count": 3531
o "QueryCount": 1212
o "StartingRecord": 1
o "EndingRecord": 1000

The customer now knows that there are 1,212 total records to retrieve, and they have 1,000 of them so

far...

• Customer makes another request using "Regions_GET" with the same $filter criteria and
specifies a $skip value of 1000

• Core provides the next 1,000 records as the returned data set

• The JSON payload contains the following information:
o "@odata.count": 3531
o "QueryCount": 1212
o "StartingRecord": 1001
o "EndingRecord": 1212

Starting Guide for Developers - InEight Integrations

18 General Information About InEight Integrations

The customer does not need to make any more requests because the EndingRecord now matches the

QueryCount.

The following example show the record counts after setting the $count parameter to true and setting

the $top parameter to 1.

{

 "@odata.context":"https://apitest.ineight.com/integrations/$metadata#Trades

",

 "value":[

 {

 "TradeDisplay":"AD",

 "TradeDescription":"",

 "IsActive":true,

 "SourceSystemId":"AD",

 "SourceSystemName":null

}

],

 "@odata.count":853,

 "QueryCount":853,

 "StartingRecord":1,

 "EndingRecord":1

}

Using the same data set and setting the $count parameter to true and $skip to 300 results in the

following record counts (note that each request returns 500 records for this API):

],

 "@odata.count":853,

 "QueryCount":853,

 "StartingRecord":301,

 "EndingRecord":800

}

Again, using the same data set; setting $count to true and $filter to "startswith(TradeDisplay, 'A')"

results in the following record counts:

],

 "@odata.count":853,

 "QueryCount":40,

 "StartingRecord":1,

 "EndingRecord":40

}

Starting Guide for Developers - InEight Integrations

General Information About InEight Integrations 19

Example Asynchronous GET Process

The following example shows the "happy path" that would be followed when retrieving data for an

entity and does not include any handling of error conditions. In this example the API returns 500 records

at a time and the entity being queried has 742 records.

Starting Guide for Developers - InEight Integrations

20 General Information About InEight Integrations

Process Description

1

• The customer system makes a GET request to an InEight API.
• The InEight API successfully validates the request and returns a "202" response containing the

"Location" element.
• The request is handed off to the InEight application business logic for processing

2
• The customer system polls the URL provided in the Location element
• Because the JSON payload file is not yet ready, InEight returns a "202" response

3
• The customer system continues to poll the URL provided in the Location element
• The JSON payload file is not available and InEight returns a "200" response with the file

4
• Because the JSON payload file contains the maximum number of records that can be returned by

the API (500), the customer system determines that it should initiate another request to get more
records

5

• The customer system makes a GET request to an InEight API and specifies that the first 500 records
should be skipped ($skip=500)

• The InEight API successfully validates the request and returns a "202" response containing the
"Location" element.

• The request is handed off to the InEight application business logic for processing

6
• The customer system polls the URL provided in the Location element
• Because the JSON payload file is not yet ready, InEight returns a "202" response

7
• The customer system continues to poll the URL provided in the Location element
• The JSON payload file is not available and InEight returns a "200" response with the file

8
• This time the JSON payload file contains 242 records, which is below the maximum that can be

returned by the API, thus indicating there should be no more records and the customer system can
stop making requests.

Starting Guide for Developers - InEight Integrations

General Information About InEight Integrations 21

Example Asynchronous POST Process

The following example shows the flow of using POST/Import APIs.

Process Description

1

• The customer system makes a POST request to an InEight API.
• The InEight API successfully validates the request and returns a "202 Accepted" response

containing the "Location" and “Retry-After” headers.
• The request is handed off to the InEight application for processing

2
• The customer system continues to poll the URL provided in the Location element after every

{Retry-After} seconds.
• Because the request is still being processed, the response will still be a “202”.

3 When InEight completes the processing of the request, a "200 OK" response is returned.

Starting Guide for Developers - InEight Integrations

22 Update, Insert, and Delete Operations for Inbound Data

Update, Insert, and Delete Operations for Inbound

Data

When InEight receives records within an integration, the following actions are performed:

Look for a match on the SourceSystemId field.

a. If a match is found,

i. If IsActive is set to true.

• Update the matching InEight record with the values provided in the integration

record.

ii. If IsActive is set to false.

• Soft delete the InEight record.

b. If a match is not found,

i. Create a new record in InEight using the values from the integration record.

Creating a New Record

Send a record via the integration that does not have an existing match on the SourceSystemId field,

which is identified in each integration specification.

NOTE:
If a new record has a matching natural key for a prior record in InEight that has IsActive
set to false, and the IsActive field on the new integration record is set to true, the system
will create a new record instead of reactivating the original record.

Updating an Existing Record

Send a record via the integration that has a match on the SourceSystemId field with the values that have

changed for the record in the full payload. When using a POST to update a record, the full payload is

expected and therefore if a field is not passed, it is considered empty and is updated accordingly. To

update only specific fields in a record, such as for Employees, use a PATCH API.

Deleting a Record

InEight does not permanently delete records from the database. Records are instead flagged as

"Inactive" to hide them from system functionality. This allows the records to remain intact to preserve

referential integrity where needed.

To remove a record, send the record via the integration that has a match on the SourceSystemId field

and set the IsActive field to false.

Starting Guide for Developers - InEight Integrations

Update, Insert, and Delete Operations for Inbound Data 23

A Note About Updating Data and Data Mismatches

As a general rule for all applications in InEight, the method for handling data race conditions is that the

last update made against a record is always applied. When an entity (e.g., Employees) is managed via

integration, but Users in InEight also have permission to edit the entity directly through the UI, this

could cause conditions where data in the source system does not match expected data in InEight due to

manual edits of records. When troubleshooting data mismatches please consider the following:

• Carefully review "last updated" time stamps and "last updated by" IDs to see if they match
expected values from integrations.

• Verify who has permission to directly edit the data in InEight.
• Ensure that integration requests to update a record within an entity only contain updated values

for the fields that should be updated.

Changing Associated Records

There are some cases where the association of a record from one entity to another must be changed,

such as when an active employee changes location from one project to another. In this case, the

Employee record does not change (Employee Integration), but the association of the employee to a

project (Project Employee Integration) does. The exact specifics of what needs to change and how the

integration needs to be triggered are determined by the customer. For instance, an employee can move

from one project to another different project, or the employee can be assigned to both projects

simultaneously. In another case, a Project record can change, and all employees assigned to the project

might need to be updated. The following cases provide examples of how to handle the association

updates.

Case: An Employee moves from one Project to another

1. Send a ProjectEmployee integration record with the EmployeeDisplay for the impacted

Employee, ProjectId for the project that they are moving FROM, and IsActive is set to false to

remove the employee from the project.

2. Send a ProjectEmployee integration record with the EmployeeDisplay for the impacted

Employee, ProjectId for the project that they are moving TO, and IsActive is set to true to add

the employee to their new project.

Case: Employee assigned to a new Project in addition to existing
Project(s)

Send a ProjectEmployee integration record with the EmployeeDisplay for the impacted Employee,

ProjectId for the project that they are being assigned to, and IsActive is set to true to add the employee

to their new Project.

Case: All Employees assigned to a new Project

Follow the same pattern as "Case: Employee changes Projects" for all impacted employees.

